Extending multi-objective differential evolution for optimization in presence of noise
نویسندگان
چکیده
The paper aims at designing new strategies to extend the selection step of traditional Differential Evolution for Multi-objective Optimization algorithm to proficiently obtain Pareto-optimal solutions in presence of noise. The first strategy, referred to as adaptive selection of sample size, is employed to balance the trade-off between accurate fitness estimate and computational complexity. The second strategy is concerned with determining defuzzified centroid value of the noisy fitness samples, instead of their conventional averaging, as the fitness measure of the trial solutions. The third extension is concerned with the introduction of a probabilistic Pareto ranking strategy to tarnish the detrimental effect of noise incurred in deterministic selection of traditional algorithms. The fourth strategy attempts to extend Goldberg’s approach to examine possible placement of a slightly inferior solution in the optimal Pareto front using a more statistically viable comparator. Finally, to ensure the diversity in distribution of quality solutions in the noisy fitness landscapes, a new selection criterion induced by the crowding distance measure and the probability of dominance is formulated. Experiments undertaken to study the performance of the extended algorithm reveal that the extended algorithm outperforms its competitors with respect to four performance metrics, when examined on a test-suite of 23 standard benchmarks with additive noise of three statistical distributions. 2015 Elsevier Inc. All rights reserved.
منابع مشابه
Pareto Optimal Balancing of Four-bar Mechanisms Using Multi-Objective Differential Evolution Algorithm
Four-bar mechanisms are widely used in the industry especially in rotary engines. These mechanisms are usually applied for attaining a special motion duty like path generation; their high speeds in the industry cause an unbalancing problem. Hence, dynamic balancing is essential for their greater efficiency. In this research study, a multi-objective differential evolution algorithm is used for P...
متن کاملMULTI-OBJECTIVE OPTIMIZATION OF ARCH DAMS USING DIFFERENTIAL EVOLUTION METHODS
For optimization of real-world arch dams, it is unavoidable to consider two or more conflicting objectives. This paper employs two multi-objective differential evolution algorithms (MoDE) in combination of a parallel working MATLAB-APDL code to obtain a set of Pareto solutions for optimal shape of arch dams. Full dam-reservoir interaction subjected to seismic loading is considered. A benchmark ...
متن کاملPareto Optimal Multi-Objective Dynamical Balancing of a Slider-Crank Mechanism Using Differential Evolution Algorithm
The present paper aims to improve the dynamical balancing of a slider-crank mechanism. This mechanism has been widely used in internal combustion engines, especially vehicle engines; hence, its dynamical balancing is important significantly. To have a full balance mechanism, the shaking forces and shaking moment of foundations should be eliminated completely. However, this elimination is usuall...
متن کاملOptimum Pareto design of vehicle vibration model excited by non-stationary random road using multi-objective differential evolution algorithm with dynamically adaptable mutation factor
In this paper, a new version of multi-objective differential evolution with dynamically adaptable mutation factor is used for Pareto optimization of a 5-degree of freedom vehicle vibration model excited by non-stationary random road profile. In this way, non-dominated sorting algorithm and crowding distance criterion have been combined to differential evolution with fuzzified mutation in order ...
متن کاملA Hybrid Fire Fly and Differential Evolution Algorithm for Optimization of a Mixed Repairable and Non-Repairable System Reliability Problem
In this paper, a hybrid meta-heuristic approach is proposed to optimize the mathematical model of a system with mixed repairable and non-repairable components. In this system, repairable and non-repairable components are connected in series. Redundant components and preventive maintenance strategies are applied for non-repairable and repairable components, respectively. The problem is formulate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 305 شماره
صفحات -
تاریخ انتشار 2015